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Abstract

The goal of this research is to identify 3D geometric
boundaries in a set of 2D photographs of a static indoor
scene under unknown, changing lighting conditions. A 3D
geometric boundary is a contour located at a 3D depth dis-
continuity or a discontinuity in the surface normal. These
boundaries can be used effectively for reasoning about the
3D layout of a scene. To distinguish 3D geometric bound-
aries from 2D texture edges, we analyze the illumination
subspace of local appearance at each image location. In
indoor time-lapse photography and surveillance video, we
frequently see images that are lit by unknown combinations
of uncalibrated light sources. We introduce an algorithm for
semi-binary nonnegative matrix factorization (SBNMF) to
decompose such images into a set of lighting basis images,
each of which shows the scene lit by a single light source.
These basis images provide a natural, succinct representa-
tion of the scene, enabling tasks such as scene editing (e.g.,
relighting) and shadow edge identification.

1. Introduction

Edge detection is a fundamental problem in computer vi-
sion, providing important low-level features for myriad ap-
plications. Edges in images can result from various causes,
including surface texture, depth discontinuities, differences
in surface orientation, changes in material properties, and
illumination variations. Many existing algorithms model
edges as changes in low-level image properties, such as
brightness, color, and texture, within an individual image
[19, 5, 15, 14]. The problem of extracting 3D geometric
boundaries, which are discrete changes in surface depth or
orientation, has received less attention. As 3D geometric
boundaries do not vary with changes in illumination or tex-
ture, they are robust characteristics of indoor scenes that
can provide useful cues for many tasks including segmen-
tation [20], scene categorization [17, 8], 3D reconstruc-

∗The research described in this paper was all done at MERL.

(a) (b)
Figure 1. Problem overview: Given a set of images of a static in-
door scene under varying lighting (a), we identify 3D geometric
boundaries (shown in red) and shadow edges (shown in green), as
opposed to texture edges (shown in black) (b).

tion [7], and scene layout recovery [9].
We aim to detect 3D geometric boundaries from a set

of images of an indoor static scene, captured from a fixed
camera viewpoint, under uncontrolled lighting conditions
due to unknown combinations of multiple unknown light
sources. In time-lapse photography or video of indoor
scenes, such as building surveillance or a living space im-
aged by a camera in a TV set, light sources in the envi-
ronment are turned on/off independently, producing images
with unknown combinations of light sources. In such situa-
tions, there is no control over which lighting combinations
are observed, nor over the lights’ locations or brightness.
This breaks key assumptions of work on detecting depth
edges using calibrated light sources. For example, struc-
tured light approaches such as [10] rely on strategically pro-
jected light patterns, and the multi-flash camera approach
[18] requires a set of lights that encircle the camera and
are individually activated in a controlled sequence. Further-
more, in our setup, the lights are not restricted to be point
sources, and the distances from the lights (and camera) to
the scene points are not infinite (these distances are compa-
rable to the size of the scene). This contrasts with previous
methods [21, 11, 22] that require distant lighting to recover
3D structure from 2D images under varying illumination.

We capitalize on the observation that on a non-specular
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(e.g., Lambertian) 3D surface, neighboring pixels have the
same relative response to lighting even though they may
have different albedos. The reason is that in a small neigh-
borhood the 3D surface is locally planar (adjacent pixels
come from surfaces with approximately the same normal),
and the 3D distance between points in two neighboring pix-
els is much smaller than the distances from the surface to
the light sources and camera. Based on this observation,
we develop a method that can distinguish pixels on 3D geo-
metric boundaries (pixels whose immediate neighborhoods
include a discontinuity in surface normal or in depth) from
pixels whose neighborhoods may contain sharp texture (in-
tensity) boundaries but lie on a single surface.

We formulate 3D geometric boundary detection as a
per-pixel classification problem by analyzing the rank of
the illumination subspace of local appearance around each
point. The illumination subspace of local appearance
around a point is the subspace spanned by the appearance
of the point’s neighborhood across all lighting conditions.

Given a set of images, each of which is illuminated by
multiple light sources, we learn lighting basis images using
a type of nonnegative matrix factorization. A lighting basis
image is the image that would be formed when the scene is
illuminated by just one of the individual light sources that is
present in the scene (note that this need not be a point light
source). This is somewhat similar to the concept of intrinsic
images [1, 23, 16, 21], which serve as mid-level scene de-
scriptions. Unlike much of the previous work, our method
assumes neither a single distant light source whose position
varies smoothly over time, nor an orthographic camera.

As our generative imaging model satisfies the superpo-
sition property (the image resulting from a combination of
lights is the sum of the images resulting from each of the
lights independently), and we do not know which combi-
nations of light sources are present in the input images,
we introduce a type of Nonnegative Matrix Factorization
(NMF) to solve for lighting basis images. In general NMF,
a nonnegative data matrix is factored into a product of two
nonnegative matrices [12, 13, 3]. To solve our problem,
we introduce semi-binary nonnegative matrix factorization
(SBNMF), in which a nonnegative data matrix is factored
into a product of a nonnegative matrix and a binary matrix.
We factor a matrix containing the input images into a non-
negative matrix of basis images and a binary weight matrix
that indicates which light sources were on/off in each input
image (see Figure 2). The recovered lighting basis images
provide a compact scene representation under lighting vari-
ations. In addition to enabling scene editing tasks such as
relighting, the basis images make it possible to distinguish
true 3D geometry edges from shadow edges.

We apply our method for 3D geometric boundary de-
tection to three datasets and compare with state-of-the-art
contour detection methods. Precision-recall curves for each

Figure 2. Overview of our factorization approach: An image
(a) illuminated by a combination of several light sources can be
represented as an additive combination of lighting basis images
(b),(c),(d). Hence, (e) given a set of images Y, we solve for basis
images V via nonnegative matrix factorization, with binary con-
straints on the entries of the lighting weight matrix W.

method on each dataset demonstrate the superior perfor-
mance of our approach on this type of data.

2. Indoor Scene Decomposition Under Vari-
able Lighting

In this section, we describe our generative image model
for indoor scenes and propose a new optimization algorithm
for recovering the lighting bases.

2.1. Generative Image Model

Assume there are l light sources illuminating the indoor
scene, with each light source controlled by an independent
switch. We assign a binary variable wi to indicate the status
of each light source. Then we define a nonnegative lighting
basis image vi ∈ R+n as the image formed when only the
ith light is on. Given an image y that is illuminated by any
combination of the l light sources, it can be expressed as the
superposition of individual basis images:

y =
l∑

i=1

wivi, wi ∈ {0, 1}. (1)

Note that throughout the paper, we write images as column
vectors formed by stacking all the columns of the image.

We capture m images under various combinations
of light sources and rearrange them into a data matrix
Y = [y1,y2, ...,ym] ∈ R+n×m. Following (1), this data
matrix can be decomposed as:

Y = VW, (2)

where the columns of V ∈ R+n×l correspond to the l ba-
sis images vi, and W ∈ {0, 1}l×m is an indicator matrix

2



whose entries Wij show the contribution of the ith light
source to the jth input image (see Figure 2).

2.2. Recovering Basis Images via SBNMF

If the true lighting basis images are linearly independent,
and we observe sufficient illumination variability (the rank
of the true indicator matrix W is not less than the number
of lights), then the number of lights in the scene, l, is given
by the rank of the data matrix Y. Note that if there are two
or more lights that are always turned on and off together,
they are considered a single light source.

We formulate recovery of the basis images and indicator
matrix as a constrained optimization problem:

min
V,W
‖Y −VW‖2F , s.t. Vij ≥ 0,Wjk ∈ {0, 1},∀i, j, k

(3)
which we call Semi-Binary Nonnegative Matrix Factoriza-
tion (SBNMF). This is a challenging problem due to the
non-convex objective function and the binary constraints on
W. Instead, we initially solve the continuous relaxation:

min
V,W
‖Y −VW‖2F , s.t. Vij ≥ 0, 0 ≤Wjk ≤ 1, ∀i, j, k

(4)
where the binary constraints on Wij are replaced by sim-
ple box constraints. This is a bi-convex problem which we
solve using the Alternating Direction Method of Multipliers
(ADMM) [4]. We rewrite (4) by introducing an auxiliary
variable X, and replacing positivity and box constraints by
indicator functions:

min
X,V,W

‖Y −X‖2F + I[0,∞)(V) + I[0,1](W)

s.t. X−VW = 0
(5)

where indicator function IS(Z) equals 0 if every entry of
matrix Z is in set S and equals∞ otherwise. Next we form
the augmented Lagrangian:

L(X,V,W,U) = ‖Y −X‖2F + I[0,∞)(V) + I[0,1](W)

+(µ/2)‖X−VW +U‖2F − (µ/2)‖U‖2F
(6)

where U is the scaled dual variable and µ is the augmented
Lagrangian parameter1. ADMM solves the augmented La-
grangian dual function by a sequence of convex subprob-
lems where the biconvex function is decoupled:

(Xk+1,Vk+1) = argmin
X,V≥0

(
‖X−Y‖2F +

(µ/2)‖X−VWk +Uk‖2F
)

(7)

Wk+1 = argmin
0≤W≤1

‖Xk+1 −Vk+1W +U‖2F (8)

Uk+1 = Uk +Xk+1 −Vk+1Wk+1 (9)
1Here we use the scaled form of the augmented Lagrangian function in

which the scaled Lagrangian multiplier is redefined as U = Z/µ, where
Z is the original Lagrange multiplier.
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Figure 3. Convergence curve of Algorithm 1 showing residual er-
ror (4) vs. iteration number.

Algorithm 1 Semi-Binary Nonnegative Matrix Factorization

1: Input: A set of images Y ∈ R+n×m

2: Compute the number of lights l = rank(Y)
3: Initialize X0 = zeros(n,m), V0 = zeros(n, l),

W0 = rand(l,m), U0 = zeros(n,m), µ = 10−3, k = 0
4: while not converged do
5: Update primal variables Xk+1, Vk+1, Wk+1 according to

(7) and (8)
6: Update dual variable Uk+1 according to (9)
7: end while
8: Round each entry of the indicator matrix W to binary
9: Solve for final lighting basis images V using (10)

10: Output: Basis images V and binary light indicator matrix W

These subproblems are iteratively solved until convergence
of primal and dual residuals [4]. Following that, we round
each entry of W to {0, 1}, and compute the final basis im-
ages V based on this binary indicator matrix using nonneg-
ative least squares:

min
V
‖Y −VW‖2F s.t. Vij ≥ 0, ∀i, j. (10)

Note that since W is constant in this optimization (10), the
problem is convex. Our decomposition algorithm is sum-
marized in Algorithm 1.

In Figure 3, we plot convergence curves of the proposed
decomposition algorithm for 70 different light configura-
tions (data matrices) from 3 different scenes (indicated with
color code) starting from random initializations. In general,
the algorithm converged in fewer than 20 iterations. Al-
though the problem is non-convex, in 87% of the trials our
algorithm recovered the true solution, while in the remain-
ing ones it converged to a local optimum. In our implemen-
tation, we used the CVX optimization toolbox [6] to solve
each convex subproblem.

3. Detecting 3D Geometric Boundaries
The set of images of a convex Lambertian surface under

arbitrary variations of point lights at infinity forms a convex
cone in Rn, where the dimension of the cone depends on
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(a) (b) (c)

Figure 4. An image patch (containing points 1 and 2) may contain
(a) no 3D geometric boundary, (b) a discontinuity in surface nor-
mal, or (c) a discontinuity in depth (from camera’s point of view).

Figure 5. Categories of edges. Examples of patches containing
3D geometric boundaries: (b) discontinuity in normal and (c) dis-
continuity in depth. Examples of edges that are not 3D geometric
boundaries: (a) texture edges and (d) shadow edge.

the number of distinct surface normals [2]. For typical in-
door scenes, however, the distant lighting assumption is not
valid. To allow for nearby lighting, we consider one small
image patch at a time and analyze how the appearance of
that patch varies over multiple lighting conditions. We show
that if all pixels in a patch come from a single smooth sur-
face in the scene, then the patch appearance across lightings
forms a one-dimensional subspace. If the patch contains a
3D geometric boundary, however, then its appearance sub-
space will generally have dimension greater than one.

3.1. Illumination Subspace of Local Appearance

For simplicity, we justify our method here for Lamber-
tian surfaces with only a direct lighting component, but an
analogous argument will work for a broader class of re-
flectance functions and indirect lighting (e.g., multiple re-
flections). To simplify the explanation, we discuss only
point light sources, because an extended isotropic light
source can be arbitrary well approximated as a superposi-
tion of multiple point light sources.

Figure 4 shows three Lambertian scenes, each illumi-
nated by two point light sources, A and B. (We explain the
notation for source A; source B is analogous.) The surface
normal at point i is n̂i, and the vector from point i to light
A is rai (the corresponding unit vector is r̂ai ). The intensity
of the point on the image plane that corresponds to surface
point i is Iai (for light source A) or Ibi (for light B):

Iai = γai
n̂T
i r̂

a
i

‖rai ‖2
Eaρi, Ibi = γbi

n̂T
i r̂

b
i

‖rbi‖2
Ebρi. (11)

Here n̂T
i r̂

a
i is the cosine of the angle between n̂i and rai ,

Ea is the radiance intensity of light source A, and ρi is the
surface albedo at point i. Binary value γai = 1 if point i is
illuminated by source A, whereas γai = 0 if point i is not lit
by source A due to an attached or cast shadow.

In each of the three scenes in Figure 4, points 1 and 2 are
quite close from the perspective of the camera, so they will
both be included in the same small image patch. In scene
(a), the patch contains no sudden changes in normal and no
depth discontinuities. Thus the 3D distance between points
1 and 2 is small compared to the distances from each point
to each light, and hence for scene (a) we have the following
approximate equalities:

n̂1 ≈ n̂2, ra1 ≈ ra2 , rb1 ≈ rb2. (12)

Since in scene (a) all points in the patch share approxi-
mately the same normal and the same vector to each light
source, we can eliminate the subscripts i in (11) and use n̂,
ra, and rb for all points in the patch. For now, we will also
assume that every point i in the patch shares a single value
for γai (which we will call γa) and shares a single value
γb of γbi , which means that for each light source, the entire
patch is either illuminated by or shadowed from that light
(the patch contains no shadow edges). We will consider
shadow edges in Section 3.2.

Let Pa and Pb represent the vector of pixel intensities
of the patch imaged under light A alone and light B alone,
respectively. For the case in Figure 4(a), we have the ap-
proximate equality Pa = kaρ :I

a
1

Ia2
...


Pa

≈ γaEan̂Tr̂a

‖ra‖2︸ ︷︷ ︸
ka

ρ1ρ2
...


ρ

, (13)

where the scalar ka is constant across all pixels in the patch,
and ρ is the vector of surface albedos for all of the pixels in
the patch. For the same patch under light sourceB, we have
the analogous equation: Pb = kbρ.

We have just demonstrated that if a patch contains no
sudden changes in normal nor in depth (and no shadow
edges), its pixel intensities under any light source will equal
a scalar multiple of ρ. In other words, the subspace spanned
by the appearance of that local patch under all light sources
(which we call the illumination subspace of local appear-
ance) will have dimension 1. Note that this is true regard-
less of the surface texture (albedo). Even if the surface
albedo of the patch contains high-contrast texture edges, its
illumination subspace of local appearance will still be one-
dimensional. This result is at the heart of our method for
finding geometric edges, because the same will not gener-
ally be true if a patch contains a 3D geometric edge.

For example, if a patch contains a discontinuity in nor-
mal, as in Figure 4(b), then the first approximation in (12)
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does not hold, and the intensity of each point in the patch
will depend on the cosine of the angle between its surface
normal and its direction to the light source. If a patch con-
tains a different type of 3D geometric edge, a depth discon-
tinuity as in Figure 4(c), then the last two approximations
in (12) do not hold (because the lights are not at infinity),
and the intensity of each point in the patch will again de-
pend on the cosine of the angle between its surface normal
and its direction to the light source. In general, if a patch
contains a 3D geometric edge, its illumination subspace of
local appearance will have dimension greater than 1.

Confidence Map of 3D Geometric Boundaries We can
now detect geometric boundaries by identifying patches
whose illumination subspaces of local appearance have di-
mension greater than one. For each pixel location, we ex-
tract a τ -pixel patch centered at that location from m input
images (m light combinations), and arrange them as column
vectors in a τ ×m matrix, Z:

Z = [P(1),P(2), . . . ,P(m)], (14)

where vector P(j) contains all τ pixel values of the patch
extracted from image j at that pixel location. To determine
the rank of the illumination subspace of local appearance
for that patch location, we apply Singular Value Decom-
position (SVD) to Z and obtain the singular values {σP

i }
(ordered largest to smallest). In the absence of noise, a
one-dimensional illumination subspace would yield just one
nonzero singular value σP

1 , with σP
2 = 0. For each pixel lo-

cation, we compute a confidence value of the presence of a
3D geometric boundary as the ratio of the second to the first
singular value for the patch centered at that location:

c(P) = σP
2 /σ

P
1 . (15)

3.2. Removing Shadow Edges

Parts (b) and (c) in Figures 4 and 5 illustrate both types
of 3D geometric boundaries: (b) discontinuity in the nor-
mal and (c) discontinuity in depth. Our method of Sec-
tion 3.1 successfully detects both types (b) and (c), and it is
not fooled by texture edges (Figure 5(a)). However, shadow
edges (Figure 5(d)) are often detected as false positives. A
patch contains a shadow edge if for one of the light sources,
some pixels of the patch are illuminated and others are in
shadow. We have observed that in most cases, each shadow
edge is caused by only a single light source. Based on this
observation, we can use our ability to decompose a set of
images of a scene into its single-light-source lighting basis
images (Section 2.2) to eliminate most of the false positives
caused by shadow edges.

We can eliminate the shadows produced by light source i
by subtracting basis image vi from the set of images Y:

Y(i) = Y − viw
i, (16)

Figure 6. Sample input images (under various light combinations)
of Scene 2.

where wi is the ith row of lighting indicator matrix W,
and Y(i) denotes the scene images re-rendered with light i
turned off.2 Applying our boundary detection technique to
Y(i) results in a boundary confidence mapC(i) in which the
shadow edges resulting from the ith light source are elimi-
nated. The final response map C is obtained by taking the
minimum at each pixel location across all confidence maps
{C(i)}li=1, so that if a shadow edge disappears when any
one of the light sources is removed, that edge will not be
present in the final response map.

We summarize our boundary detection procedure in Al-
gorithm 2.

Algorithm 2 Detect geometric boundary from images under
variable lighting

1: Input: A set of m images Y, lighting basis images {vi}li=1

and binary light indicator matrix W.
2: for i=1,2,...,l do
3: Get image set Y(i) using equation (16)
4: At each pixel location, extract patches {P(j)}mj=1 from

Y(i), form matrix Z as in (14). Compute edge response
map C(i) using (15) to get per-pixel confidence values.

5: end for
6: Output the final response map C by taking the minimum at

each pixel among {C(i)}li=1

4. Experiments

To evaluate our SBNMF method, we collected new
datasets, which we use to compare our method with existing
contour detection techniques.

2An alternative approach is to let Y(i) equal the set of all of the lighting
basis images excluding basis image i. This could be more stable if the set
of input images is unbalanced (if some light sources are turned on more
frequently than others).
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4.1. Dataset Collection

We collected three datasets, each of which contains pho-
tographs of a different indoor scene under all possible light-
ing variations caused by turning individual light sources on
or off. (See example images of the scenes in the figures
throughout this paper.) For each scene, we set up five in-
dependent near-field (not at infinity) light sources, which
ranged in extent from nearly point sources (exposed soft
white lightbulbs) to area sources (portable fixtures contain-
ing multiple parallel fluorescent tubes). Each light was
placed in a different location for each of the three scenes.
By turning the 5 lights on/off in all combinations, we cap-
tured 32 different images of each scene with a Canon Rebel
T2i DSLR camera. Although each dataset includes the
single-light-source images, we did not use these as input
images in any of our experiments, to ensure that our algo-
rithm can handle difficult real-world situations in which we
would have no control over the lighting. Figure 6 shows
sample images from one of the datasets.

4.2. Scene Decomposition Results

For each run of our experiments on a dataset, we ran-
domly choose a subset of the images from the dataset as
our input image set, being sure not to select any of the five
single-light-source images (which correspond to the light-
ing basis images we want to recover). We then apply Al-
gorithm 1 to decompose this input image set to recover
the lighting basis images V (examples from one scene are
shown in Figure 7) and the indicator weights W that tell
which lights were on/off in each input image. After recov-
ering the lighting basis images, we can re-render the scene
under new, unseen lighting conditions by displaying new
linear combinations of the basis images (varying the coeffi-
cients continuously between 0 and 1). A video demonstrat-
ing these relighting results is in the Supplementary Material.

4.3. 3D Geometric Boundary Detection Results

We now apply our Algorithm 2 for detecting 3D geo-
metric boundaries to input image sets from each of the 3
datasets, using square patches of size 3×3 pixels. We com-
pare with the Canny detector [5] and the gPb detector [14],
which is a state-of-the-art method for detecting boundaries
in 2D images. Figure 8 displays detection results for two of
the scenes. Since Canny and gPb are both designed for use
on single images, we apply them to each input image indi-
vidually. For Canny, the final set of edges is the union of
the edges from all of the individual images, which we con-
vert into a continuous-valued response map using the values
of the Canny thresholds at which each edge is first detected.
For gPb, we average the value of the probability map of [14]
across all input images to obtain the final response map.
The Canny detector [5], shown in (b) in Figure 8, cannot
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Figure 11. Precision-recall curves of our method on Scene 1 under
different numbers of light sources. When the set of input images
is generated using fewer light sources, performance degrades.

distinguish texture edges (nor shadow edges) from 3D ge-
ometric boundaries. The gPb [14] method (c) extracts the
geometric contours of some foreground objects without be-
ing confused by small-scale texture, but it still detects large
texture patterns in the background. Furthermore, gPb does
not detect the contours of objects when they are at a small
scale, nor when the background is similar in appearance to
the objects (e.g., the arms and right front leg of the chair
in Scene 2). In contrast, our approach is effective at distin-
guishing 3D geometric boundaries from both texture edges
and shadow edges, giving true 3D geometric contours of
objects the highest response map values. Our method can
detect both curved geometric boundaries (e.g., the arms of
the chair in Scene 2) and straight edges. At the same time,
our method avoids false edge detections on smoothly curved
surfaces that do not contain geometric boundaries (e.g., the
concave top surface of the seat cushion in Scene 2).

Quantitative evaluations on all three scenes verify the ad-
vantages of our method for detecting 3D geometric bound-
aries. For each scene, we manually annotated the ground
truth 3D geometric boundaries. Figure 9 shows precision-
recall (PR) curves for all methods tested. To evaluate our
shadow edge removal method, we test our approach both
before shadow edge removal (Section 3.1) and after shadow
edge removal (Section 3.2 and Algorithm 2). Points on the
PR curves were obtained by gradually varying the thresh-
olds for each method’s response map. In Figure 10, we
compare binary edge detection results across methods on
one of the scenes by setting the threshold for each method
that corresponds to a recall value of 0.8. The PR curves
demonstrate that the Canny detector [5] has the worst per-
formance of the methods tested due to its false positives
from texture edges. The gPb method [14] performs signifi-
cantly better than Canny on Scenes 2 and 3 by not detecting
the small-scale texture edges. Overall, both of our meth-
ods outperform the two existing methods by a large margin.
Our approach after shadow edge removal gives particularly
strong performance.
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Figure 7. Scene decomposition results (recovered lighting basis images) for Scene 1.

(a) (b) (c) (d)
Figure 8. Edge detection results on Scene 1 (first row) and Scene 2 (second row): (a) Original image (b) Edges from Canny detector [5] (c)
Probability of edges from gPb [14] (d) 3D geometric boundary response map of our approach.

Varying the Number of Light Sources To explore how
the number of light sources available in a scene affects the
detection of 3D geometric boundaries, we examined how
performance was affected by selecting more and more re-
stricted sets of input images (choosing subsets of the input
set that had fewer light sources present). The precision-
recall curves for three, four, and five light sources are com-
pared in Figure 11. As expected, the additional information
provided by increasing the number of light sources leads to
improved boundary detection.

5. Conclusions and Future Work
We propose an image-based technique to identify geo-

metric boundaries of an indoor scene with no prior knowl-
edge of the scene geometry or light source positions. We

provide a SBNMF method to factor a set of images un-
der varying lighting into a set of lighting basis images.
These basis images provide a natural scene representation
and enable follow-up scene editing tasks such as relighting,
as well as elimination of shadow edges. Our algorithms
successfully factorize the scene, yielding boundary detec-
tion results that outperform state-of-the-art contour detec-
tion methods. In the future, we plan to extend our factor-
ization method by considering continuous sources of illu-
mination such as sunlight and skylight in addition to binary
sources. In addition, boundaries inferred by our algorithm
will benefit subsequent analysis such as image segmenta-
tion, object recognition, and inference of scene layout.
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Figure 9. Comparison of precision-recall curves of different edge detectors on (a) Scene 1, (b) Scene 2, and (c) Scene 3.

(a) (b) (c) (d)

Figure 10. Thresholded binary edge detection results on Scene 1, (thresholded for recall 0.80): (a) Canny edges [5] (b) Edges from gPb [14]
(c) Edges from our approach before shadow edge removal (Sec. 3.1) (d) Edges from our approach after shadow edge removal (Sec. 3.2).
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